表4.1 波形圖中數(shù)據(jù)與實際數(shù)據(jù)對照表
小數(shù)倍頻率偏移和采樣鐘頻率偏移模塊是在整偏校完之后才有效,此時的小數(shù)倍頻率偏移是經(jīng)過時域粗偏估計校正后的剩余部分。表4.1列出波形中的估值與實際數(shù)據(jù)的對應(yīng)關(guān)系。從表中的數(shù)字對應(yīng)關(guān)系可以看出,電路中估計的小數(shù)倍頻偏與實際頻偏的差在0.1%以內(nèi)。采樣鐘偏移估計值與實際偏移誤差為1ppm左右,這已滿足了采樣鐘的粗調(diào)精度;相位輸出為前后符號的小數(shù)倍偏頻所引起的相位旋轉(zhuǎn)。由此單元電路,可以準(zhǔn)確地估計出小數(shù)倍頻偏和采樣鐘偏移及其相位。
細(xì)定時同步估計的電路仿真
圖中的data_re_in[15..0]和data_im_in[15..0]表示經(jīng)公共相位校正后的復(fù)數(shù)據(jù)實虛部;syn_in是輸入有用數(shù)據(jù)的起始位置脈沖;sym_type[1..0]是前端輸入的符號類型;taok[22..0]和td[9..0]分別為估計的符號定時偏移和其整數(shù)部分;syn_tao是taok[22..0]的有效數(shù)據(jù)起始脈沖信號。
圖4.3 符號定時偏移估計單元的電路波形圖
圖4.3中共有9個符號。由于本算法利用了4個符號的散布導(dǎo)頻,故圖4.3中,從第四個符號的結(jié)束處開始,在syn_tao后的taok[22..0]才是當(dāng)前符號的定時偏移估計值。波形中的估值與實際數(shù)據(jù)的對應(yīng)關(guān)系如表4.2所示。
表4.2 波形圖中數(shù)據(jù)與實際數(shù)據(jù)對照表
表4.2中的定時實際偏移為-112,而不是仿真條件中的-100,這是由于在瑞利信道的仿真模型中,符號定時同步頭位置(重心位置)是在第一條徑之后12個采樣點出現(xiàn)的。由表中數(shù)據(jù)對應(yīng)關(guān)系可知,符號定時偏移估計單元可準(zhǔn)確地估出符號定時偏移的整數(shù)部分。由于采樣鐘偏移、算法估計誤差及電路運算誤差的影響,其小數(shù)部分不為零,這與電路的仿真結(jié)果一致。
改進(jìn)前后占用硬件資源比較
表4.3給出了改進(jìn)前后,頻域同步所占用的硬件資源比較,其中ALUTS、Registers、Memorybits、DSPblock9-bitelements分別為自適應(yīng)查找表、寄存器、存儲器和9字節(jié)DSP處理塊。通過比較可以發(fā)現(xiàn),改進(jìn)后的方案可以節(jié)省大量的硬件資源。
表4.3 改進(jìn)前后的硬件資源對比
結(jié)束語
頻率偏移估計可以分為整數(shù)倍頻偏估計單元、小數(shù)倍頻偏、采樣鐘偏移估計單元和符號定時偏移估計單元。本文主要介紹各部分的算法方案及電路實現(xiàn)時所用的FPGA元件的基本結(jié)構(gòu)、設(shè)計思路。最后通過對電路的仿真波形可以看出,這些頻域同步算法和FPGA電路能夠滿足多載波傳輸系統(tǒng)的同步要求。